Radial stiffness characteristics of the overlap regions of sarcomeres in isolated skeletal myofibrils in pre-force generating state

نویسندگان

  • Daisuke Miyashiro
  • Misato Ohtsuki
  • Yuta Shimamoto
  • Jun’ichi Wakayama
  • Yuki Kunioka
  • Takakazu Kobayashi
  • Shin’ichi Ishiwata
  • Takenori Yamada
چکیده

We have studied the stiffness of myofilament lattice in sarcomeres in the pre-force generating state, which was realized by a relaxing reagent, BDM (butane dione monoxime). First, the radial stiffness for the overlap regions of sarcomeres of isolated single myofibrils was estimated from the resulting decreases in diameter by osmotic pressure applied with the addition of Dextran. Then, the radial stiffness was also estimated from force-distance curve measurements with AFM technology. The radial stiffness for the overlap regions thus obtained was composed of a soft and a rigid component. The soft component visco-elastically changed in a characteristic fashion depending on the physiological conditions of myofibrils, suggesting that it comes from cross-bridge structures. BDM treatments significantly affected the soft radial component of contracting myofibrils depending on the approach velocity of cantilever: It was nearly equal to that in the contracting state at high approach velocity, whereas as low as that in the relaxing state at low approach velocity. However, comparable BDM treatments greatly suppressed the force production and the axial stiffness in contracting glycerinated muscle fibers and also the sliding velocity of actin filaments in the in vitro motility assay. Considering that BDM shifts the cross-bridge population from force generating to pre-force generating states in contracting muscle, the obtained results strongly suggest that cross-bridges in the pre-force generating state are visco-elastically attached to the thin filaments in such a binding manner that the axial stiffness is low but the radial stiffness significantly high similar to that in force generating state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin.

When activated skeletal muscles are stretched, the force increases significantly. After the stretch, the force decreases and reaches a steady-state level that is higher than the force produced at the corresponding length during purely isometric contractions. This phenomenon, referred to as residual force enhancement, has been observed for more than 50 years, but the mechanism remains elusive, g...

متن کامل

Residual force enhancement in myofibrils and sarcomeres.

Residual force enhancement has been observed following active stretch of skeletal muscles and single fibres. However, there has been intense debate whether force enhancement is a sarcomeric property, or is associated with sarcomere length instability and the associated development of non-uniformities. Here, we studied force enhancement for the first time in isolated myofibrils (n=18) that, owin...

متن کامل

The role of sarcomere length non-uniformities in residual force enhancement of skeletal muscle myofibrils.

The sarcomere length non-uniformity theory (SLNT) is a widely accepted explanation for residual force enhancement (RFE). RFE is the increase in steady-state isometric force following active muscle stretching. The SLNT predicts that active stretching of a muscle causes sarcomere lengths (SL) to become non-uniform, with some sarcomeres stretched beyond actin-myosin filament overlap (popping), cau...

متن کامل

Titin force is enhanced in actively stretched skeletal muscle.

The sliding filament theory of muscle contraction is widely accepted as the means by which muscles generate force during activation. Within the constraints of this theory, isometric, steady-state force produced during muscle activation is proportional to the amount of filament overlap. Previous studies from our laboratory demonstrated enhanced titin-based force in myofibrils that were actively ...

متن کامل

The mechanical behavior of individual sarcomeres of myofibrils 1 isolated from rabbit psoas muscle 2 3 4 5 Ivan

20 21 The goal of this study was to develop a system to experiment with sarcomeres mechanically 22 isolated from skeletal muscles. Single myofibrils from rabbit psoas were transferred into a 23 temperature-controlled (22°C or 15°C) experimental chamber and sarcomeres were isolated 24 using pre-calibrated glass micro-needles that were pierced externally, adjacent to the Z-lines. 25 The force pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017